

Module 4: Analyzing image content with computer vision

Lesson 4.2: Image classification and object detection

nils.holmberg@iko.lu.se

Image classification and object detection

- · Pixels lack intrinsic meaning
- CV infers meaning from patterns
- 2D order enables locality
- Classification assigns learned labels
- Detection locates named instances

Applications in sustainability communication

- · Sources include PDFs, web
- · Quantify greenwashing color cues
- Operationalize qualitative frame types
- Measure actor prominence shifts
- Consent bias fairness concerns

Install computer vision models in Colab

- · Colab offers managed GPUs
- Hugging Face supplies pretrained models
- Embeddings enable text-image checks
- Notebooks capture reproducible workflows
- · Ephemeral limits favor accessibility

Inferential image analysis, classification

- Classification handles diverse labels
- · Parallels supervised text labeling
- Separate natural symbolic cues
- Need balanced curated data
- Labels must reflect content

Iterate classification to dataframe

- · Pipelines iterate images, frames
- Store results in dataframes
- Tables enable filtering comparisons
- · Handle multilabel long-tail classes
- Aggregation should preserve nuance

Inferential image analysis, object detection

- Detection localizes multiple instances
- · Counts and sizes signal salience
- Dense occluded scenes challenge recall
- · Class imbalance skews detectors
- Supports actor copresence measures

Object localization and confidence scores

- · Boxes give rectangular localization
- Tracking captures temporal transitions
- Confidence scores need thresholds
- Report confidence validation checks
- · Filter low-confidence detections

